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ABSTRACT
Multimodal fake news detection (FND) is significant in safeguarding
network security and societal safety. Most existing studies only fo-
cus on common semantic features between different modalities and
utilize simple cross-entropy loss for model training. However, these
studies overlook the incongruent semantic features in multimodal
news data, which can arise within or between modalities. More-
over, the utilization of simple cross-entropy loss may not provide
the model with robustness against well-designed forged fake news.
To address the above issues, we propose a novel approach named
Signed Attention-based Graph Transformer with Adversarial Con-
trastive Learning (SAGT-ACL) for the detection of multimodal fake
news. SAGT-ACL models fine-grained semantic associations in mul-
timodal news articles by constructing a fully connected multimodal
graph and reframes the fake news classification task as a graph clas-
sification problem. Additionally, SAGT-ACL incorporates a signed
attention-based graph transformermodule to identify both common
and incongruent semantics within and across modalities. Finally,
SAGT-ACL proposes an adversarial data augmentation mechanism
to simulate malicious forgeries by fake news creators and designs
an auxiliary adversarial contrastive learning task to help the model
learn more discriminative news representations from the adversar-
ial samples for robust and effective detection. Extensive experiments
demonstrate that SAGT-ACL outperforms existing methods, with
detection accuracy improvements of 4.95%, 6.01%, and 5.68% on
Weibo, Twitter, and Gossipcop datasets, respectively.
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1 INTRODUCTION
The swift advancement of multimodal social media enables news to
transition from its conventional single-text form to a multimodal
form that incorporates both images and text [32]. Multimodal news
possesses a heightened visual impact, resulting in a broad-reaching
dissemination effect [1]. Nevertheless, the absence of effective net-
work management results in the widespread propagation of fake
news, posing a significant threat to both information security and
societal stability [15]. Therefore, how to automatically and effec-
tively detect multimodal fake news is an important problem to be
solved urgently.

The key to multimodal fake news detection lies in the extraction
of distinctive features from various modalities. The advancement
of deep learning has led to the emergence of numerous fake news
detection approaches that extract multimodal features automat-
ically [5]. These approaches can be broadly classified into three
categories. Firstly, joint representation methods [8, 17, 18, 23]
concatenate features from image and text modalities to create rep-
resentations of news, yet they overlook the semantic interactions
between different modalities. Secondly, similarity representa-
tion methods [28, 31, 33] assess the similarities between differ-
ent modalities to model their information interactions at a coarse-
grained level, but they struggle to capture semantic interactions
fine-grainedly. Moreover, they tend to focus on common seman-
tics while neglecting inconsistent ones. To model the fine-grained
semantic interactions between modalities, alignment representa-
tion methods [6, 13, 19, 22, 24, 30] align the common semantics
between modalities through a well-designed attention mechanism
at a fine-grained level. However, traditional attention mechanisms
based on the softmax function tend to assign positive attention
weights, preserving only consistent features between modalities
and overlooking irrelevant, inconsistent, or even conflicting fea-
tures commonly present in fake news.

While the approaches above can enhance the efficacy of mul-
timodal fake news detection (FND), they face the following chal-
lenges:

(1) Neglect of intra and inter-modality incongruity features. Prior
studies primarily concentrate on common semantics across vari-
ous modalities, neglecting intra and inter-modality incongruent
semantic features. Incongruent semantics encompass irrelevant,
inconsistent, or conflicting semantic features that serve as crucial
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Text: New species of fish found in Arkansas.
(a)

Text: Sharks in the mall! After the hurricane sandy!

Text: Today, the Guangzhou Shahe on the morning
of 3.15has an incident.

(b)

(c)

Text: Little Syrian girl sells chewing gum on
the street so she can feed herself.

(d)

Figure 1: Some examples of multimodal fake news. (a) The
image contains intra-modality incongruity features. (b) The
image and text both contain intra-modality incongruity fea-
tures. (c) The image and the text are irrelevant. (d) The image
and the text are conflicting.

clues for identifying misinformation. Fake news is often generated
by tampering or forging by the creators. Rough forgery techniques
can easily cause semantic incongruity. To illustrate, several exam-
ples in Figure 1 demonstrate the prevalence of semantic incongruity
in multimodal fake news: (a) the body of a fish and the head of a
pig are semantically contradictory; (b) a shark and a shopping mall
are semantically conflicting; (c) the event described in the text is
unrelated to the Korean star in the image; and (d) the Syrian war
depicted in the text conflicts with the smiling girl in the image. Con-
sequently, effective mining of intra-modality and inter-modality
incongruent semantic features is the major challenge to multimodal
fake news detection.

(2) Lack of robustness to adversarial samples.With the improve-
ment of fake news forgery techniques [12], some creators use well-
designed forgery methods to avoid detection by the model. The
simple classification task makes the model lack robustness in the
face of the elaborately forged samples. In some cases, just introduc-
ing a simple adversarial perturbation may lead to misclassification
of labels, which presents a significant risk to the fake news detec-
tion system [3]. Consequently, enhancing the robustness of FND
models against adversarial samples is another critical challenge
that needs to be addressed.

To address the above challenges, we propose a novel approach
for detecting multimodal fake news, termed Signed Attention-based
Graph Transformer with Adversarial Contrastive Learning (SAGT-
ACL), as shown in Figure 2. Specifically, we first employ pre-trained
unimodal encoders to extract fine-grained image and text features
and map them into a unified embedding space. Subsequently, we
construct a fully connected multimodal graph for each news item
using the representations in the unified space and transform the
fake news detection task into a graph classification task. Based on
the multimodal graph, we propose a novel signed attention-based
graph transformer (SAGT) to explore the consistent and incon-
gruent features within and between different modalities. Unlike
traditional attention mechanisms, SAGT separates the sign and

weight of the attention, allowing for the adaptive preservation of
both positive and negative associations for each node pair. To en-
hance the robustness of the model, we utilize an adversarial training
mechanism to simulate the well-designed forgery of fake news cre-
ators. Moreover, we propose an auxiliary adversarial contrastive
learning task to pull the distance between the original and adver-
sarial samples of the same class in the hidden space and to push
the distance between the samples of different classes,

The main contributions of this paper are summarized as follows:

• To capture complex, fine-grained semantic associations in
multimodal news, we construct a fully connected graph for
each news item and design a signed attention-based graph
transformer module (SAGT) for learning this graph. The
SAGT module separates the sign and the weight of attention
to preserve consistent and incongruent semantic features
within and across modalities.

• To identify carefully forged fake news, we introduce an ad-
versarial contrastive learning (ACL) auxiliary task. The ACL
task employs adversarial data augmentation to generate chal-
lenging samples and supervised contrastive learning to help
the model learn more discriminative features from these chal-
lenging samples, leading to robust and effective detection.

• We perform comprehensive experiments using three repre-
sentative datasets to validate the effectiveness of our pro-
posed SAGT-ACL model in detecting multimodal fake news.

2 RELATEDWORK
Multimodal fake news detection (FND) seeks to detect the truth-
fulness of news based on its multimodal content features. The
existing multimodal FND approaches can be categorized into three
categories: joint representation methods, similarity representation
methods, and alignment representation methods.

The joint representation methods utilize unimodal encoders to
learn visual and textual representations, respectively, followed by
simple vector concatenation to obtain the multimodal represen-
tation of the news. Based on this, Wang et al. [23] add an event
classification auxiliary task to help the model better understand
multimodal content. Similarly, Khattar et al. [8] add a news recon-
struction auxiliary task. Benefiting from the strong representation
capability of the pre-trained models [10], Singhal et al. [17, 18]
utilize the pre-trained language model BERT [7] or XLNet [29] and
the visual model VGG19 [16] to extract text and image features,
respectively, and then concatenate them to obtain the multimodal
news representation for classification. However, simple concate-
nation fails to capture the complex semantic interactions between
different modalities, leading to limitations.

Similarity representation methods coarse-grainedly model se-
mantic interactions between different modalities by comparing the
similarity between them. Zhou et al. [31] transform the image into
caption text by utilizing an image caption model and measure the
Similarity between the news text and the caption text. Xue et al.
[28] map the image and the text into the same semantic space and
calculate their cosine similarity. Zhou et al. [33] use CLIP scores
to measure the similarity between modalities. Despite achieving
some results, similarity representation methods can only capture

667



Intra and Inter-modality Incongruity Modeling and Adversarial Contrastive Learning for Multimodal Fake News Detection ICMR ’24, June 10–14, 2024, Phuket, Thailand

information interactions at the coarse-grained level and cannot
describe semantic interactions at the fine-grained level.

To address this issue, alignment representation methods model
fine-grained semantic interactions by aligning the consistent details
of the image and text through well-designed attention mechanisms.
Jin et al. [6] use an attention-based RNN to highlight the text token
associated with the image to enhance the model’s understanding
of news. Inspired by the transformer model’s self-attention mecha-
nism [21], some studies utilize modified co-attention mechanisms
[13, 19, 24, 30] to align and fuse the image and the text features. Nev-
ertheless, the aforementioned approaches fail to consider the incon-
sistency between different modalities. Blindly aligning mismatched
images and text can lead to the introduction of unpredictable noise.
Therefore, Wang et al. [22] propose a masked attention mechanism
to mask out irrelevant information between modalities and only
align modality-common information, thus avoiding the introduc-
tion of noise. However, they ignore modality-specific information,
leading to performance loss.

Although the above methods achieve good results, they only
focus on the common features while ignoring the intra and inter-
modality incongruity features. In addition, they lack robustness in
the face of elaborate fake news.

3 PROBLEM FORMULATION
The multimodal fake news detection task can be considered as a bi-
nary classification problem. Specifically, we letD =

{
𝑛1, 𝑛2, . . . , 𝑛 |D |

}
denote the set of news, where |D| denotes the total number of
news. Each news item in the dataset can be represented as 𝑛𝑖 =
{(𝑇𝑖 ,𝑉𝑖 ) , 𝑦𝑖 }, where 𝑇𝑖 is the text, 𝑉𝑖 is the image, and 𝑦𝑖 ∈ {0, 1} is
the ground-truth label of the news (i.e., real or fake). Formally, the
objective of fake news detection is to learn a projection 𝐹 (𝑇,𝑉 ) →
{0, 1}.

4 METHODOLOGY
4.1 Feature Extraction
Given a piece of multimodal news, the feature extraction module
aims to extract the features from text and image modality and map
them into a unified embedding space.

4.1.1 Text Feature Extraction. To effectually capture word seman-
tics and linguistic contexts, we utilize the Bidirectional Encoder
Representations from Transformers (BERT) [7] to extract textual
features of news. Specifically, the text𝑇 is tokenized into a sequence
list of words 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑘 }, where 𝑘 denotes the number of
words in the text. Then, we input the word sequence into a pre-
trained BERT model to get the transformed embeddings as:

E𝑇 =

{
e𝑇1 , e

𝑇
2 , . . . , e

𝑇
𝑘

}
= BERT (𝑇 ) , (1)

where e𝑇
𝑖
∈ R𝑑𝑡 is the output word embedding in BERT and 𝑑𝑡 is

the dimension of the word embedding.

4.1.2 Visual Feature Extraction. Benefiting from the effectiveness
of the Vision Transformer (ViT) [4] in visual understanding tasks,
we use ViT to extract visual features. Specifically, we reshape the
image 𝑉 ∈ R𝐶×𝐻×𝑊 into a sequence of flattened 2D patches 𝑉 ∈
R𝑛×(𝑃2 ·𝐶) , where (𝐻,𝑊 ) is the resolution of the original image, 𝐶

is the number of channels, (𝑃, 𝑃) is the resolution of each image
patch, and 𝑛 = 𝐻𝑊 /𝑃2 is the resulting number of patches. Then,
we input the patch sequences into a pre-trained ViT to get patch
embeddings as:

E𝑉 =

{
e𝑉1 , e

𝑉
2 , . . . , e

𝑉
𝑙

}
= ViT (𝑉 ) , (2)

where e𝑉
𝑖
∈ R𝑑𝑣 is the output patch embedding in ViT and 𝑑𝑣 is the

dimension of the patch embedding.
After capturing visual and textual features, we utilize a single

feed-forward layer followed by a non-linearity exponential linear
unit (ELU) [20] to map them into a uniform embedding space as:


m𝑇𝑗 = ELU

(
W𝑚e𝑇𝑖 + b𝑘

)
,∀e𝑇𝑖 ⊂

{
e𝑇1 , e

𝑇
2 , . . . , e

𝑇
𝑘

}
,

m𝑉𝑖 = ELU
(
W𝑚e𝑉𝑗 + b𝑙

)
,∀e𝑉𝑗 ⊂

{
e𝑉1 , e

𝑉
2 , . . . , e

𝑉
𝑙

}
,

(3)

whereW𝑚 ∈ R𝑑×𝑑𝑡 and b𝑚 ∈ R𝑑 are learnable parameters of the
multimodal projection layer. m𝑇

𝑖
and m𝑉

𝑗
are representations of

each token and patch in the unified multimodal space.

4.2 Multimodal Graph Construction
Benefiting from the fact that the graph structure can be used to
mine semantic associations between nodes [25], we construct a
multimodal graph G𝑀 = (V𝑀 , E𝑀 ) to simultaneously model the
intra and inter-modality semantic relationships. The node set V𝑀
consists of all image patches and text tokens and we let the repre-
sentations within the unified multimodal space as the initialized
embeddings of the nodes Hin =

{
m𝑉1 , . . . ,m

𝑉
𝑙
,m𝑇1 , . . . ,m

𝑇
𝑘

}
. The

edge set E𝑀 = {E𝑇 , E𝑉 , E𝐼 } consists of three heterogeneous types
of edges: image intra-modality edges E𝑉 , text intra-modality edges
E𝑇 , and inter-modality edges E𝐼 .

For text intra-modality edges, we assume that there exists a
relationship between each text token. Therefore, the text nodes are
fully connected with unweighted and bi-directional edges. Similarly,
any two image nodes are connected. For inter-modality edges, we
connect each text node to every image node and vice-versa. These
intra and inter-modality connecting edges help the model learn
from dependencies arising from both within and across modalities
concurrently at a more granular level.

4.3 Signed Attention-based Graph Transformer
In order to model the positive and negative relationships between
nodes in themultimodal graph, we propose a signed attention-based
graph transformer, namely SAGT, as shown in Figure 2 (b). Simi-
lar to the original transformer, SAGT includes multi-head signed
attention blocks (MH-SA), feed-forward blocks (FFN), and layer
normalization blocks (LN).

4.3.1 Signed Multi-head Attention Mechanism. The conventional
self-attention mechanism, constrained by the property of the soft-
max function, can only capture consistent (positive) associations
between nodes but ignores incongruent (negative) associations be-
tween nodes. Fake news frequently includes irrelevant, inconsistent,
or even conflicting features within or between different modalities,
making it challenging for self-attention mechanisms to identify
and process. To fully encompass the consistent and incongruent
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Figure 2: (a) The overall architecture of SAGT-ACL. It consists of a feature extraction module, multimodal graph construction
module, signed attention-based graph transformer module, fake news detector module, and adversarial contrastive learning
module. (b) The signed attention-based graph transformermodule explores intra and inter-modality consistent and incongruent
semantic features in news data. (c) The adversarial contrastive learning module pulls the distance between samples with the
same label close and pushes apart the distance between samples with different labels.

semantic features in multimodal news, a viable approach is to pro-
duce signed attention values based on the input node pairs. Positive
values can retain consistent relationships, while negative values
can capture incongruent relationships. Inspired by this, we design
a new multi-head signed attention mechanism (MH-SA) based on
the original multi-head self-attention calculation.

Specifically, given the input feature matrix Hin ∈ R(𝑘+𝑙 )×𝑑 , we
first define a set of weight matrices W𝐾

𝑖
,W𝑄

𝑖
,W𝑉

𝑖
∈ R𝑑×𝑑ℎ to

obtain query, key, and value vectors as:

Q𝑖 = HinW𝑄

𝑖
,K𝑖 = HinW𝐾

𝑖 ,V𝑖 = HinW𝑉
𝑖 , (4)

Then we calculate the signed attention as:

Signed-att (Q𝑖 ,K𝑖 ,V𝑖 ) = sgn
(
Q𝑖K⊤

𝑖

)
· softmax

( ��Q𝑖K⊤
𝑖

��√︁
𝑑ℎ

)
V𝑖 , (5)

where sgn (·) denotes the sign function, |·| denotes the absolute
value, 𝑖 denotes the 𝑖−th attention head, 𝑑ℎ denotes the output
dimension of single-headed signed attention. The principle of Equa-
tion 5 is to decompose the sign and weight of attention. The sign
information indicates the semantic correlation polarity between
nodes. Specifically, when two nodes are semantically incongruent,

sgn (·) will produce a negative signal, capturing incongruity fea-
tures. When two nodes are semantically correlated, sgn (·) will
produce a positive signal, capturing the common features. The
absolute value of the dot product result

��Q𝑖K⊤
𝑖

�� is taken and sub-
sequently normalized, ensuring that the softmax function places
greater emphasis on attention weights.

Like the original transformer, we also boost the model’s repre-
sentational power by extending the signed attention to multi-head
signed attention (MH-SA). This is denoted as:

MH-SA (Q,K,V) = (ℎ𝑒𝑎𝑑1 ∥ ℎ𝑒𝑎𝑑2 ∥ · · · ∥ ℎ𝑒𝑎𝑑ℎ)W𝑜

ℎ𝑒𝑎𝑑𝑖 = Signed-att (Q𝑖 ,K𝑖 ,V𝑖 ) , 𝑖 ∈ {1, 2, · · · , ℎ} (6)

where (· ∥ ·) denotes vector concatenation operation,W𝑜 ∈ Rℎ ·𝑑ℎ×𝑑
represents the learnable parameter matrix, ℎ denotes the total num-
ber of attention heads and 𝑑ℎ = 𝑑/ℎ.

4.3.2 Graph Transformer. Similar to the original transformermodel
[21], we also employ feed-forward layers (FFN) with residual con-
nections and layer normalization techniques (LN) to prevent the
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loss of initial information. These procedures are represented as:

H′(𝐿) = LN
(
MH-SA (Q,K,V) + H𝐿−1

)
H𝐿 = LN

(
FFN

(
H′(𝐿)

)
+ H′(𝐿)

(7)

where the superscript 𝐿 denotes the number of layers of the signed
attention-based graph transformer,H𝐿 denotes the node embedding
of the 𝐿−th layer output.

4.4 Fake News Detector
After 𝐿−layer SAGT, we can acquire the final node representations
Hout ∈ R(𝑘+𝑙 )×𝑑 . Then, we utilize a graph pooling layer to obtain
a global news representation x.

x = Pool
({
hout1 , hout2 , . . . , hout

𝑘+𝑙
})

(8)

To classify the authenticity of the news, we input the news represen-
tation x into a fully connected network with a softmax activation
function to get the predicted result as:

𝑦𝑖 = Softmax (x𝑖W𝑐𝑙𝑠 + b𝑐𝑙𝑠 ) (9)

whereW𝑐𝑙𝑠 and b𝑐𝑙𝑠 are the learnable parameters. For the fake news
detection task, we use the standard cross-entropy loss function as
below:

L𝐶𝐸 = − 1
|D|

|D |∑︁
𝑖=1

𝑦𝑖 · log𝑦𝑖 (10)

where |D| is the number of news, 𝑦𝑖 and 𝑦 respectively denote the
ground-truth label and the predicted probability of the 𝑖-th news
from the classifier.

4.5 Adversarial Contrastive Learning
Since fake news creators often fool detection models through well-
designed forgery techniques, a simple classifier based on cross-
entropy loss is unable to detect carefully faked fake news. For this
reason, we propose a supervised adversarial contrastive learning
auxiliary task to achieve effective and robust detection.

4.5.1 Adversarial Data Augmentation. To avoid model detection,
fake news publishers often utilize camouflage strategies to make
the fake news closer to real news instances, thus confusing the de-
tection model. The ultimate goal is to make the representations of
fake news closer to that of real news in the hidden space. Therefore,
we propose an adversarial data augmentation approach to model
this behavior in the hidden space and generate adversarial samples
to help the model achieve robust and efficient detection. Ideally,
the adversarial data augmentation perturbs the original news rep-
resentation to maximize the cross-entropy loss, thus confusing the
detection model.

Specifically, following the classical adversarial training methods
[26, 27], we utilize the Fast Gradient Value method (FGM) [11] to
estimate the gradient adversarial perturbation as a noise vector for
each news representation:

x𝑎𝑑𝑣𝑖 = x𝑖 + 𝛿 = x𝑖 + 𝜀 ∗
▽x𝑖L𝐶𝐸 (x𝑖 , 𝑦𝑖 )▽x𝑖L𝐶𝐸 (x𝑖 , 𝑦𝑖 )


2

(11)

where x𝑎𝑑𝑣
𝑖

is the adversarial view that shares the same label with
the original news, 𝛿 is an adversarial perturbation, 𝜀 is the norm

parameter is the norm parameter to control the normalized gradi-
ent as a valid perturbation. The gradient represents the first-order
differential of the classification loss function L𝐶𝐸 for a specific tar-
get sample, indicating the direction in which the classification loss
increases rapidly. We set the perturbation 𝛿 less than the norm pa-
rameter 𝜀 to ensure that the perturbation is imperceptible. Gradient-
based adversarial data augmentation can maintain news semantics
and simulate malicious forgery by fake news creators.

4.5.2 Contrastive Training. To ensure effective and robust detec-
tion, we propose an auxiliary supervised adversarial contrastive
learning task to align the representations of original and adver-
sarial samples. The core idea is to minimize the distance between
representations of original and adversarial samples from the same
class closer while maximizing the distance between representations
from different classes. The corresponding adversarial contrastive
loss L𝐴𝐶𝐿 is expressed in the following manner:

L𝐴𝐶𝐿 =
−1

|P (x) |
∑︁

x𝑝 ∈P(x)
log

exp
(
cos

(
x, x𝑝

/
𝜏)

)∑
h𝑛∈N(x) exp (cos (x, x𝑛/𝜏))

(12)

where x is the anchor, x𝑝 is the positive sample with the same label
as the anchor x, and x𝑛 is the negative sample with the label differ-
ent from the anchor x. P (x) represents the positive set, comprising
both the original samples and adversarial samples of the same class
within the batch. On the other hand,N (x) denotes the negative set,
encompassing samples of different classes within the batch. 𝜏 is a
temperature parameter and cos (·) represents the cosine similarity
function.

The design of the auxiliary adversarial contrastive learning task
has two benefits. First, it pulls the original and adversarial news
representations close to each other in the embedding space, thereby
enhancing robustness. Second, it improves the uniformity of repre-
sentations within the same class and the disparity of representa-
tions between different classes, thereby leading to more efficient
classification.

Finally, we combine the cross-entropy loss and supervised ad-
versarial contrastive loss to train our model:

L = LCE + 𝜆LACL (13)

where 𝜆 represents a hyper-parameter used to regulate the degree
of adversarial contrastive learning.

5 EXPERIMENTS
In this part, we conduct experiments on three public datasets to
answer the following research questions:

• RQ1: How does SAGT-ACL perform compared to previous
multimodal fake news detection methods?

• RQ2: How effective are various model components in im-
proving the performance of SAGT-ACL?

• RQ3: How does SAGT-ACL perform under different hyper-
parameter settings?

• RQ4: How does SAGT-ACL perform in capturing intra and
inter-modality semantic incongruity features?
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5.1 Experiment Setup
5.1.1 Datasets. To validate the effectiveness of SAGT-ACL, we
perform experiments on three public datasets: Weibo [6], Twitter
[2], and Gossipcop [14]. Details of datasets are presented below:

Weibo dataset is proposed by Jin et al. [6] and is extensively
utilized in the Chinese multimodal fake news detection task. The
dataset comprises news articles sourced fromXinhuaNewsAgency1
and Weibo2 platform. The training set contains 3,783 real news and
3,675 fake news, and the test set contains 1,685 news. Twitter
dataset is released for MediaEval Verifying Multimedia Use task [2].
The news in the dataset is collected from the Twitter3 platform. The
training set comprises 5,139 fake news and 4,031 real news, and the
test set contains 1,406 news. Gossipcop dataset is proposed by Shu
et al. [14]. The real news in the Gossipcop dataset is collected at
the famous trusted media website E!Online4, and the fake news is
collected from the fact-checking website Gossipcop5. The training
set contains 7,974 real news and 2,036 fake news. The test set has
2,830 fake news.

5.1.2 Comparison Methods. To validate the performance of SAGT-
ACL on the multimodal fake news detection task, We compare
SAGT-ACL with several typical multimodal methods, which can be
roughly divided into three categories, as below:

Joint representation methods: SpotFake [18] extracts text and
image features using pre-trained BERT [7] and VGG19 [16], re-
spectively, and concatenates them for classification. SpotFake+
[17] extracts text and image features using pre-trained XLNet [29]
and VGG19, respectively, and concatenates them for classification.
EANN [23] concatenates text and image features as multimodal
news representations. Furthermore, EANN introduces an auxil-
iary event classification task to help the model obtain better news
representations.MVAE [8] obtains news representations by con-
catenating unimodal features. MVAE introduces an auxiliary news
reconstruction task to learn better multimodal representation.

Similarity representation methods: SAFE [31] utilizes an image
caption model to convert the image to text and compare the sim-
ilarity of the original text with the generated text. MCNN [28]
maps different modality features into the same embedding space
and compares the similarity between them. FND-CLIP [33] utilizes
the CLIP score to measure cross-modal similarity. The CLIP score
also guides the model’s use of different modality data.

Alignment representation methods:MCAN [24] employs a co-
attention network to align multimodal features. CARMN [19] pro-
poses a cross-modal attention residual network to align multimodal
features and design a multi-channel CNN to mitigate the noise
generated during the modal fusion process.HMCAN [13] employs
a hierarchical attention model that takes into account the hierar-
chical semantics of the text as well as the contextual semantics
between different modalities. BTIC [30] employs a self-attention
mechanism to align multimodal features and trains the model using
supervised contrastive loss and cross-entropy loss. CMMTN [22]

1http://www.xinhuanet.com
2https://weibo.com
3https://twitter.com/
4https://www.eonline.com/
5https://wwwgossipcop.com/

uses a multi-modal masked transformer network to align the multi-
modal features and mask the irrelevant context between modalities.

5.1.3 Implementation Details. For our proposed SAGT-ACL model,
the implementation details are as follows. In the feature extraction
component, we use the pre-trained BERT [7] to get the token em-
beddings, and the textual embedding dimension of BERT is set to
𝑑𝑡 = 768. We use the “bert-base-chinese” model for Chinese data
and the “bert-base-uncased” model for English data. For the input
image, we resize it to 224 × 224 and employ "ViT-B/16" [4] pre-
trained on ImageNet to get the patch embeddings. and the visual
embedding dimension of ViT is set to 𝑑𝑣 = 768. To prevent overfit-
ting, we freeze the parameters of BERT and ViT during the training
process. The common embedding space dimension to which we
project the text and image features is 𝑑 = 768. In the SAGT compo-
nent, the number of graph transformer layers 𝐿 is set to 2, and the
number of attention heads ℎ is set to 8. In the ACL component, the
contrastive coefficient 𝜆 is set to 0.3. In the training phase of the
model, we set the mini-batch size as 128, the learning rate as 5𝑒 − 4,
and the training epoch as 100 with an early stopping mechanism
to mitigate overfitting. Meanwhile, we utilize the Adam algorithm
[9] to optimize the parameters. For all other comparison methods,
we adopt the parameter settings from the original paper to ensure
optimal performance.

5.2 Performance Comparison (RQ1)
We compare our proposed SAGT-ACL method with twelve typ-
ical multimodal fake news detection methods on three datasets.
The overall results are shown in Table 1, from which we have the
following observations:

• The SAGT-ACL model outperforms other state-of-the-art
methods in terms of both ACC and F1 metrics on all three
datasets. This can be attributed to two key factors. Firstly,
SAGT-ACL can comprehensively mine consistent and incon-
gruent features in multimodal news. Secondly, SAGT-ACL
can identify elaborate fake news through adversarial con-
trastive learning, thereby enhancing the effectiveness and
robustness of the model.

• Joint representation methods (e.g., EANN, MVAE, SpotFake,
SpotFake+) perform weaker compared to other methods. It
is because they completely ignore the semantic associations
between modalities, which can provide sufficient clues for
fake news detection.

• The similarity representation methods perform better than
the joint representation methods in terms of ACC and F1
metrics on all three datasets, which is attributed to their
ability to capture semantic associations between modalities.
However, they perform weaker than aligned representation
methods in most of the metrics. Because they can only cap-
ture coarse-grained associations between modalities, but
ignore fine-grained semantic interactions.

• Almost all alignment representation methods demonstrate
superior performance compared to both joint representa-
tion methods and similarity representation methods on all
three datasets. This proves that fine-grained semantic in-
teractions within and between modalities are important for
fake news detection. Nevertheless, they ignore the intra and
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Table 1: Performance comparison between SAGT-ACL and other methods on three datasets. We evaluate the performance using
ACC and F1. Bold numbers in the table indicate the best performance.

Method Weibo Twitter Gossipcop

ACC F1 ACC F1 ACC F1

Joint Representation Methods

EANN [23] 0.779 0.781 0.761 0.764 0.753 0.758
MVAE [8] 0.782 0.784 0.752 0.756 0.774 0.771

SpotFake [18] 0.794 0.791 0.788 0.789 0.781 0.783
SpotFake+ [17] 0.796 0.797 0.791 0.786 0.789 0.792

Similarity Representation Methods
SAFE [31] 0.811 0.813 0.801 0.799 0.831 0.825
MCNN [28] 0.823 0.816 0.812 0.809 0.821 0.809

FND-CLIP [33] 0.859 0.856 0.856 0.851 0.849 0.856

Alignment Representation Methods

MCAN [24] 0.868 0.865 0.866 0.871 0.847 0.841
CARMN [19] 0.865 0.846 0.865 0.861 0.851 0.849
HMCAN [13] 0.876 0.874 0.871 0.873 0.858 0.842
BTIC [30] 0.884 0.883 0.879 0.875 0.863 0.869

CMMTN [22] 0.889 0.882 0.881 0.879 0.853 0.859

Our Method SAGT-ACL 0.933 0.931 0.934 0.932 0.912 0.911

inter-modality semantic incongruity, resulting in a decrease
in performance. CMMTN utilizes a mask-attention mecha-
nism to eliminate irrelevant components between modalities
and diminish noise in modal interactions, thereby enhancing
overall performance. In addition, BTIC utilizes supervised
contrastive learning to optimize the embedding space, lead-
ing to relatively favorable outcomes.

5.3 Ablation Study (RQ2)
In this subsection, we perform an ablation experiment to verify the
effectiveness of each key component of the model. Specifically, we
design the following variants of SAGT-ACL by removing partial
components from the model:

• w/o inter-modality edges: We remove the inter-modality
edges and keep only the intra-modality edges during the
construction of the multimodal graph.

• w/o intra-modality edges: we exclude the intra-modality
edges and retain only the inter-modality edges during the
creation of the multimodal graph.

• w/o SA: We replace the signed attention mechanism in the
SAGT module with a traditional attention mechanism.

• w/o ACL: We remove the auxiliary adversarial contrastive
learning task and only retain the classification task.

• w/o ADA: we conduct a simplified supervised contrastive
learning process without building adversarial samples by
adversarial data augmentation.

We compare the performance of SAGT-ACL and its variants on
three datasets. The experiment results are presented in Table 2. The
performance of SAGT-ACL drops after removing each component,
proving that each component contributes to the model. Specifically,
removing either the inter-modality or inter-modality edges resulted
in a significant decrease in SAGT-ACL performance, suggesting
that both intra-modality and inter-modality semantic interactions
contribute to understanding the news. SAGT-ACL w/o SA performs

Table 2: Results of the ablation study on three datasets. Bold
numbers in the table indicate the best performance.

Method Weibo Twitter Gossipcop

ACC F1 ACC F1 ACC F1

SAGT-ACL 0.933 0.931 0.934 0.932 0.912 0.911
w/o inter-modality edges 0.907 0.905 0.904 0.909 0.901 0.893
w/o intra-modality edges 0.922 0.921 0.919 0.921 0.909 0.893

w/o SA 0.913 0.909 0.911 0.915 0.898 0.891
w/o ACL 0.901 0.903 0.906 0.894 0.873 0.877
w/o ADA 0.909 0.911 0.915 0.912 0.888 0.887

significantly weaker than SAGT-ACL, which suggests that captur-
ing inconsistent or even conflicting semantics between features
can be helpful for fake news detection. Furthermore, SAGT-ACL
significantly outperforms both SAGT-ACL w/o ACL and SAGT-ACL
w/o ADA. This suggests the value of both contrastive learning and
adversarial data augmentation. Contrastive learning can explore
the intrinsic relationships to help identify the fundamental differ-
ences between classes. Meanwhile, adversarial data augmentation
can enhance the robustness and effectiveness of the model in the
face of elaborate fake news.

5.4 Sensitivity Analysis (RQ3)
In this section, we conduct experiments to validate the effect of
different hyperparameter settings on the performance of SAGT-
ACL.

5.4.1 The number of SAGT layers 𝐿. The hyperparameter 𝐿 in-
dicates the number of SAGT layers. We test the performance of
SAGT-ACL when 𝐿 = 1, 2, 3, and the results are shown in Figure 3.
We can obtain the following conclusions:

The SAGT-ACL achieves significant performance improvement
when 𝐿 changes from 1 to 2 and achieves the optimal result when
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Figure 3: The influence of different SAGT layers on model
performance.

𝐿 = 2. This indicates that single-layer SAGT is not sufficient to
capture complex semantic associations in the multimodal graph.

However, the effect of SAGT-ACL decreased when 𝐿 increased
from 2 to 4. This suggests that a moderate 𝐿 can help the model
capture fine-grained semantic interactions in multimodal news, but
too large 𝐿 can cause over-smoothing problems on the graph.

5.4.2 The contrastive coefficient 𝜆. The hyperparameter 𝜆 deter-
mines the extent of the auxiliary adversarial contrastive learning
task in model training. We perform experiments to see how the con-
trastive coefficient 𝜆 affects the performance of SAGT-ACL. Specifi-
cally, we evaluate the accuracy of SAGT-ACL on three datasets as
the parameter 𝜆 takes values ranging from 0.0 to 0.5. The experi-
ment results are shown in Figure 4, from which we can draw the
following conclusions. There is a significant improvement when 𝜆
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Figure 4: The influence of different contrastive coefficients
on model performance.

ranges from 0.0 to 0.10. Note that 𝜆 = 0.0 indicates that the model
focuses only on the classification task. This suggests that the auxil-
iary adversarial contrastive learning task can indeed improve the
effectiveness of the model. The performance grows with 𝜆 increas-
ing and peaks at the best when 𝜆 = 0.30 on all three datasets, which
indicates that the optimal value of the hyperparameter 𝜆 is 0.30.

As the parameter 𝜆 is incremented from 0.30 to 0.50, the model’s
performance exhibits a decline on all three datasets. This phenom-
enon can be attributed to the notion that a moderate 𝜆 value fa-
cilitates the acquisition of dependable representations that aid in

the classification task; conversely, an elevated 𝜆 value may lead the
model astray from its primary classification object.

5.5 Case Study (RQ4)
To intuitively demonstrate the effectiveness of the SAGT module
in mining intra and inter-modality incongruity features, we select
some typical cases and analyze them. Specifically, we visualize
the incongruity features in multimodal news learned by the SAGT
module. In the news shown in Figure 5 (a), SAGT captures fine-
grained inconsistency features within image modalities, such as
the body of a fish and the head of a pig being contradictory. In
the news shown in Figure 5 (b), SAGT captures inter-modality
inconsistent features, where the death event described in the text
is contradictory to the smile in the image.

Text: New species of1fish1found
in Arkansas.

(a)

Text: An1employee of the Jefferson
County morgue died this morning
after being accidentally cremated
by one of his coworkers.

(b)

Figure 5: The visualization of features captured by the SAGT
module. Red highlights indicate inconsistent features cap-
tured by the SAGT module.

6 CONCLUSION
This study introduces a new model called Signed Attention-based
Graph Transformer with Adversarial Contrastive Learning (SAGT-
ACL) for multimodal fake news detection. SAGT-ACL focuses on
comprehensively mining common and incongruent features in mul-
timodal news data. In addition, SAGT-ACL designs a novel auxiliary
adversarial contrastive learning task for robust and effective mul-
timodal fake news detection. The experimental results show that
SAGT-ACL achieves high accuracies of 0.933, 0.934, and 0.912 on
Weibo, Twitter, and Gossipcop datasets, respectively, underscoring
the efficacy of the proposed approach.

In future research, we intend to expand our current work in
two main directions: first, by integrating additional modalities (in-
cluding video and audio) for fake news detection, and second, by
devising self-supervised tasks to efficiently utilize the extensive
unlabeled news data in social media platforms.
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